Program sensitivity measures how robust program’s outputs are to changes in its input. This is a useful measure in fields like differential privacy and cyber-physical systems, in order to guarantee that input changes have a limited effect on the program behavior. A natural way to formalize program sensitivity is in terms of metrics on the input and output spaces, requiring that a k-sensitive function maps inputs that are at distance d to outputs that are at most at distance k*d. Program sensitivity is thus an analog of Lipschitz continuity for programs.
To make these ideas concrete, Reed and Pierce introduced Fuzz, a functional language with a linear type system that can express program sensitivity. They show soundness operationally, in the form of a metric preservation property. Inspired by their work, we study program sensitivity and metric preservation from a denotational point of view. In particular, we introduce metric CPOs, a novel semantic structure for reasoning about computation on metric spaces, endowing CPOs with a compatible notion of distance. This structure is useful for reasoning about metric properties of programs, and specifically about program sensitivity. We demonstrate their expressiveness by giving a model for the deterministic fragment of Fuzz.
Thu 19 JanDisplayed time zone: Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna change
16:30 - 17:20 | |||
16:30 25mTalk | A Semantic Account of Metric Preservation POPL Arthur Azevedo de Amorim University of Pennsylvania, USA, Ikram Cherigui ENS Paris, Marco Gaboardi SUNY Buffalo, USA, Justin Hsu , Shin-ya Katsumata Kyoto University | ||
16:55 25mTalk | Cantor Meets Scott: Semantic Foundations for Probabilistic Networks POPL Steffen Smolka Cornell University, Praveen Kumar Cornell University, Nate Foster Cornell University, Dexter Kozen Cornell University, Alexandra Silva University College London DOI File Attached |